>> 自然の科学 >  >> 物理

加速度は、合計の初期速度と最終速度の半分に等しいのはいつですか?

加速度は、加速度が一定の場合、初期速度と最終速度の合計の半分に等しい そして、動きは均一に加速されます 。

その理由は次のとおりです。

* 平均速度: 均一に加速された動きでは、平均速度は単に初期速度と最終速度の平均です:(v_i + v_f) / 2。

* 加速度と変位: 加速度(a)は、時間の経過に伴う速度(v)の変化速度(t):a =(v_f -v_i) / tであることがわかっています。

* 変位: 変位(Δx)は、平均速度と時間の産物です:Δx=((v_i + v_f) / 2) * t。

これらの方程式の組み合わせ:

1。加速度の方程式から、(v_f -v_i)=a*tを見つけるために再配置できます。

2。これを変位方程式に置き換えます:Δx=((v_i + v_f) / 2) * t =(a * t / 2) * t。

3。簡素化:Δx=(1/2) * a * t^2。

したがって、加速度が一定で、動きが均一に加速されると、平均速度は初期速度と最終速度の合計の半分に等しく、変位は(1/2) * a * t^2。で与えられます。

  1. 動いている方向を変えると、動く体の速度はどうなりますか?
  2. 99.3メガヘルツの波長はどれくらいですか?
  3. 誰が浮力の力を決定する方法を発見しましたか?
  4. 瞬間は力時間距離であるため、コールフォースは真実ですか?
  5. オブジェクトの位置が基準点に比べて変更されない場合、そのポイントは動いていますか?
  6. 光線がガラスブロックに向けられたときはどうなりますか?