>> 自然の科学 >  >> 天文学

実際の質量で得られた軌道と比較値のデータに基づく太陽の質量はいくらですか?

地球の軌道データを使用して太陽の質量を計算し、それを実際の値と比較する方法は次のとおりです。

概念を理解する

* ニュートンの普遍的重力の法則: この法律は、宇宙の物質のすべての粒子が、大衆の積に比例し、中心間の距離の平方に反比例する力で他のすべての粒子を引き付けると述べています。数学的に:

f =g *(m1 * m2) / r^2

どこ:

* fは重力の力です

* gは重力定数です(6.674 x 10^-11 m^3 kg^-1 s^-2)

* M1とM2は2つのオブジェクトの質量です

* rはセンター間の距離です

* 中心力: 円形の経路を移動するオブジェクトは、円の中心に向かって力を経験します。この力は、中心力と呼ばれます。それはによって与えられます:

fc =(m * v^2) / r

どこ:

* mはオブジェクトの質量です

* vはオブジェクトの軌道速度です

* rは軌道の半径です

* 軌道周期: オブジェクトが別のオブジェクトの周りにある軌道を完成させるのにかかる時間。

計算

1。地球の軌道データ:

*軌道半径(R):1.496 x 10^11 m(地球と太陽の平均距離)

*軌道周期(t):365.25日=3.156 x 10^7秒

2。地球の軌道速度:

* v =2πr / t

* v =2 *π *(1.496 x 10^11 m) /(3.156 x 10^7 s)

*V≈29,783m/s

3。等しい力:

*太陽と地球の間の重力は、地球をその軌道に留めているものです。 したがって、重力(f)は中心力(fc)に等しくなります。

* g *(m_sun * m_earth) / r^2 =(m_earth * v^2) / r

4。太陽の質量(M_SUN)の解決:

* m_sun =(v^2 * r) / g

* m_sun =((29,783 m / s)^2 * 1.496 x 10^11 m) /(6.674 x 10^-11 m^3 kg^-1 s^-2)

*m_sun≈1.989x 10^30 kg

実際の質量との比較

太陽の実際の質量は約1.989 x 10^30 kgです。

結果:

地球の軌道データを使用して計算された太陽の質量は、実際の値に非常に近いものです。これにより、ニュートンの普遍的な重力の法則が検証され、天の力学の理解におけるその重要性が強調されています。

  1. 世界で最高の望遠鏡がパフォーマンスと能力の他の条件から際立っているのはなぜですか?
  2. 対流圏でどのような現象が発生しますか?
  3. なぜ月、星、太陽が空の位置を変えるのですか?
  4. 青から赤へと変化する星の表面温度はどれくらいですか?
  5. 生命の始まりに対する人類の最も野心的な探求
  6. 温度計の対流または伝導の水銀で何が起こりますか?