1。力方向:
* 電界: 荷電粒子に電界によって及ぼす力は常に 正の電荷のためのフィールドの方向に、負の電荷のフィールドの反対側。この力は、粒子の速度に依存しません。
* 磁場: 荷電粒子に磁場によって加えられる力は垂直 フィールドと粒子の速度の両方に。この力は、粒子が動いているときにのみ存在します。
2。右側のルール:
* 磁場: 右側のルールを使用して、移動電荷の磁力の方向を決定できます。親指を粒子の速度の方向、磁場の方向に指を向け、手のひらが正電荷の力の方向を指します。
実験セットアップ:
帯電した粒子(電子やプロトンなど)が未知のフィールドの領域で発射されるセットアップを使用できます。進む方法は次のとおりです。
* 観測1:粒子が直線で動きます: 粒子が速度や方向を変えずに直線で移動し続けると、磁場が存在しないことがわかります。電界がある場合、粒子は加速しますが、その経路は直線のままです。
* 観測2:粒子の偏向: 粒子がその直線経路からそらすと、磁場が存在することがわかります。
*粒子が円形経路で動く場合、磁場は均一で粒子の速度に対して垂直です。
*粒子がらせん状の経路で動く場合、磁場は粒子の速度に平行な成分を持っています。
* 観測3:粒子が加速/減速: 粒子が方向を変えることなく加速または減速する場合、電界が存在することがわかります。
追加の考慮事項:
* 組み合わせフィールド: 電界と磁場の両方を同時に存在させることが可能です。この場合、荷電粒子の総力は、電気力と磁力のベクトル合計です。
* ローレンツ軍法: 電磁界の荷電粒子の力は、ローレンツ軍の法律で説明されています: f =Q( e + v × b )、 どこ:
* f 力です
* Qは粒子の電荷です
* e 電界です
* v 粒子の速度です
* b 磁場です
未知のフィールドで荷電粒子の動きを慎重に観察することにより、これらの原理を使用して、電磁場の存在と性質を決定できます。