>> 自然の科学 >  >> 物理

粒子は、円形経路で一定の速度がある場合、加速できますか?

はい、粒子は円形の経路で一定の速度がある場合に加速できます。加速度は中心極加速度と呼ばれます。中心性加速は、円形経路の中心に向けられ、式で与えられます。

$$ a_c =\ frac {v^2} {r} $$

どこ:

- \(a_c \)は、1秒あたりのメートルでの中心細胞加速度\(m/s^2 \)です。

- \(v \)は、粒子の速度が1秒あたりのメートルで\(m/s \)です。

- \(r \)は、メートルの円形経路の半径\(m \)です。

中心性加速は、粒子が円形の経路で移動する原因です。求心性加速がなければ、粒子は直線的に移動します。

粒子の速度は一定ですが、その速度は、その速度の方向が常に変化しているためではありません。そして、それが中心の加速を引き起こすものです。

  1. アルバート・アインシュタイン・ザ・平凡:なぜh-indexが学問的影響の偽の尺度であるか
  2. 物理学者は、球状ウイルスがどれほど大きな形成されるかを説明します
  3. 特別な相対性理論がどのように機能するか
  4. 数字によるフラットホウ素:研究者は、新しい2次元素材を作成するのに必要なことを計算します
  5. 瞬間的と長い間想定されてきた飛躍的進歩には時間がかかる
  6. Fe56にはいくつの陽子中性子と電子がありますか?